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1. EXECUTIVE SUMMARY

Corrosion is an economic burden for the United States Air Force (USAF) since repair and
maintenance operations undertaken to mitigate its effects on legacy aircraft are typically over-
conservative due to the lack of a reliable methodology to predict the future effects of corrosion
on structural performance. Therefore, a need exists for the quantitative evaluation of the effects
of corrosion on such failure modes as structural fatigue. Quantitative evaluation will enable the
safe and economical operations of aircraft.

Pitting is among the commonly observed type of corrosion damage in aircraft structures, as the
heterogeneous microstructures of high-strength aluminum alloys such as 2024 and 7075, widely
used in the construction of legacy aircraft, render them highly susceptible to this type of localized
corrosion. Accordingly, quantitative modeling of corrosion damage by pitting and its effects on
the fatigue behavior of aluminum alloys has received considerable attention.

In this study, the fracture surfaces of broken corrosion fatigue test specimens were examined in
detail in a scanning electron microscope (SEM) to develop an understanding of the nature of the
transition of the corrosion damage into fatigue cracks. The purpose was to construct a
quantitative data set of the corrosion damage metrics for use in developing and validating
corrosion fatigue life prediction models. Available aluminum alloy 7075-T6 specimens, which
had been subjected to varying levels of pitting corrosion, systematic characterization, and fatigue
testing, were used for the fractographic investigation.

The observations showed that in materials with preexisting corrosion damage, fatigue cracks
nucleate at pits and start growing immediately upon the application of load in a laboratory air
environment. Failure of these specimens is caused by a dominant crack, for which a single
crack-nucleating pit can be found in most instances. Depending on the extent of surface pitting,
secondary cracks may nucleate and grow, but have no influence on the dominant crack or the
fatigue lives. The measured sizes of the crack-nucleating pits are near those of the largest pits
on the precorroded specimen surface, consistent with the expectation that these pits would
provide the largest initial flaws to nucleate the dominant cracks. Depending on the interaction of
the various crack fronts, one of these large cracks would eventually cause the specimen failure.

Pitting corrosion causes a significant drop in the fatigue lives of aluminum alloys, even at low
levels of corrosion, but reduces life very little with further increase of corrosion damage.

Together with the results of other observations, the reduction of fatigue lives due to pitting
damage suggests the possibility of an influential pit. Further investigations are needed to verify
and refine the characteristics of such pits. The use of fractography to determine the
characteristics of crack-nucleating sites has the potential to provide corrosion metrics for
development and verification of life prediction models. For accurate life assessment, fatigue
crack growth data at very low crack sizes of the order of pit dimensions are necessary.




2, INTRODUCTION AND BACKGROUND
2.1 Introduction

The USAF has a fleet of aging aircraft. Despite modernization plans, the average fleet age
continues to increase causing increased maintenance costs and decreased mission readiness. A
1997 report by the National Research Council identified corrosion as the most costly
maintenance problem for the USAF (1). For example, for the KC-135 aircraft, the majority of
failures and structural repairs are caused by corrosion, which also contributes to increasingly
larger share of the total maintenance cost (2).

The various forms of corrosion observed in aircraft structures include galvanic, pitting and
intergranular/exfoliation corrosion, corrosion fatigue, and stress corrosion cracking. Crevice
corrosion occurs when discrete areas on an alloy are physically isolated or occluded, such as in
structural joints, and is characterized by the presence of pits and intergranular/exfoliation
corrosion. Recent publications have reviewed the effects of the various types of corrosion and
their effects on aircraft structural integrity (3). The work associated with modeling the overall
effects of corrosion in USAF aging aircraft fleet has also been discussed (4).

Analytical fracture mechanics and damage tolerance methods, similar to those used for
managing the effects of fatigue on structural integrity are being developed for modeling the
effects of corrosion damage (5). In this context, modeling of the effects of pitting corrosion on
fatigue behavior has received the most attention, partly due to the well- recognized and well-
characterized effects of pitting corrosion on reducing the fatigue lives of aluminum alloys on
fatigue crack nucleation and partly due to the relative ease of modeling corrosion pits as
equivalent initial flaws for crack nucleation. Prior and on-going work in this area, which is
relevant to the present study, is discussed in the following paragraphs.

2.2 Quantitative Assessment of the Effects of Pitting on Fatigue Behavior

The heterogeneous microstructures of high-strength aluminum alloys such as 7075, widely used
in the construction of legacy aircraft, render them highly susceptible to pitting corrosion, which is
a form of localized corrosion occurring on the surface of these materials. In studying the effects
of localized corrosion on the fatigue behavior of aircraft structures, the influence of both
preexisting corrosion as well as corrosive environments on fatigue crack initiation have been
considered. For the latter case, corrosion/fatigue interactions have been modeled by the testing
of pristine specimens in a corrosive environment during which fatigue and corrosion damage
accumulate simultaneously. In these models, corrosion pits are considered as surface cracks
whose growth rates are determined by the pitting kinetics (6-8). A fatigue crack initiates from
the corrosion pit either when the pit grows to a critical size, at which the stress intensity factor
reaches the threshold for fatigue cracking (6), or when the fatigue crack growth rate exceeds the
pit growth rate (7). A recent study of the alloy 2024-T3 showed that both these criteria are
needed for adequately describing the transition from pitting to fatigue crack growth (8).




During its service life, an aircraft structure typically experiences corrosion between flights and
fatigue loading during flight, thus pointing to the need for quantifying the effects of prior
corrosion on fatigue behavior. In this context, Harmsworth conducted the first quantitative
study of the influence of preexisting corrosion on reducing the fatigue life of aluminum alloys (9).
In this study, pit depths in alloy 2024-T4 were measured as a function of exposure time and
decreasing fatigue lives were observed with increasing corrosion exposure (pit depths).

More recently, pitting corrosion/fatigue interactions have been modeled by using pit dimensions
as inputs into fatigue life prediction models. Quantitative measures such as pit dimensions and
surface roughness have been used as metrics to describe corrosion, and their potential feasibility
in combination with crack growth analysis tools in estimating fatigue life of components
subjected to corrosion has been demonstrated (10). In this study, the measured fatigue
properties of etched (pitted) 2124-T851 and 7050-T7451 aluminum alloys compared
reasonably well with those calculated analytically using equivalent initial flaw size assumptions.
A series of criteria was also described for ranking various corrosion metrics to enable selection
of the applicable parameter for structural analysis. Bray et al. (11) have also shown that prior
corrosion pitting reduced the fatigue strength of aluminum alloys 2024-T3 and 2524-T3 at 10°
cycles by approximately 40 percent. Crack growth analysis was also used in this study to
predict the fatigue lives and to investigate the effects of the alloy compositions and pit
morphology on the fatigue lives.

A systematic investigation was recently undertaken toward developing an integrated
experimental and modeling approach to quantitatively account for the effects of prior corrosion
on the fatigue behavior of structural aluminum alloys (12, 13). The effects of preexisting
localized surface pitting corrosion damage on the fatigue lives of alloy 7075-T6 were measured
and compared with the predicted lives using measures of corrosion (metrics) obtained from a
characterization of the corrosion damage. Pit depth histograms resulting from exposing bare
7075-T6 sheets for up to 1,536 hours in a prohesion spray were determined, and the
observations of damage evolution were found to be consistent with the nucleation/growth/decay
nature of the pitting process. Fatigue crack growth models were used to predict the life of
7075-T6 specimens containing various levels of pitting damage and the measured lives generally
agreed with the predictions using the average pit size as the initial crack size. This result was
explained as due to the pit size distributions offering a significant population of pits near the
average size. A continuous decrease in fatigue life with increasing pit dimensions (increasing
corrosion exposure) was observed. It was also found that the data was bounded by Mil-
Hdbk-5 values for 7075-T6 at Kt values of 1 and 2, perhaps suggesting a threshold for crack
initiation in corroded specimens.

In several of the studies cited here, fractographic examination of broken corrosion fatigue
specimens clearly showed the nucleation of dominant fatigue cracks from corrosion pits. The
sizes of these crack-nucleating pits were found to be typically in the 50 — 250 um range (9, 12,
13). None of these investigations, however, has systematically examined the fracture surface in




detail to assess the mechanisms of fatigue crack nucleation from pits and the nature of the
corrosion pit to crack transition.

23 Corrosion Pit to Crack Transition

The fatigue damage and failure induced by pitting corrosion are composed of seven stages: pit
nucleation, pit growth, transition from pit growth to short crack, short crack growth, transition
from short crack to long crack, long crack growth, and fracture (14). In studying the effects of
pre-existing corrosion on fatigue behavior, pit nucleation and growth are not relevant, but the
nature of transition from the pit to short crack and short crack growth need to be clearly
delineated. Available life prediction methods are adequate once the cracks grow beyond the
short crack stage.

In polycrystalline materials, preexisting surface damage can initiate a crack immediately upon the
application of load (15). This fact coupled with the observation that the fracture surfaces of
aluminum alloy 2024-T3 and 2524-T3 specimens subjected to interrupted fatigue testing
showed fatigue cracks emanating from pits at less than about 15 percent of the total life of
corresponding noncorroded specimens and that large numbers of secondary cracks were
observed in these specimens, suggests that pitting can nearly eliminate the fatigue initiation stage.
The numerous cracks initiated at surface damage sites would all coalesce very quickly into one
or more larger cracks and ultimately to a dominant crack.

Detailed analysis of corrosion fatigue fracture surfaces to fully delineate and understand the
corrosion pit to crack transition has not been conducted. The limited amount of fractography
conducted to date typically shows a very clear interface between the dominant crack and the
crack-nucleating pit, suggesting that for corrosion modeling purposes, a single pit may be
considered to nucleate the dominant crack immediately upon loading the specimen.

24  Summary

While significant progress has been made in characterizing the effects of pitting corrosion on the
fatigue behavior of high-strength aluminum alloys, not enough is known about the nature of the
early stages of corrosion fatigue deformation in general and the mechanism of corrosion pit to
crack transition in particular. A quantitative fractographic assessment of failed and well-
characterized corrosion fatigue specimens has the potential to provide an understanding of the
pit to crack transition and to enable the development and validation of life prediction models.




3. PROGRAM OBJECTIVES AND APPROACH
3.1  Program Objectives

The objective of the “Corrosion Pit to Crack Transition” Program is to perform a detailed
fractographic analysis of fractured, aluminum alloy corrosion fatigue specimens in which the
cracks are expected to have developed at corrosion sites, generally pits. The purpose is to
obtain an understanding of the corrosion pit to crack transition by identifying and documenting
the

e Type, location, size, and shape of the corrosion at all identifiable crack nucleation sites

e Relevant details of how the failure progressed that could be identified from the fracture
surface, especially when the cracks were small

e Dominant crack — the one that grew the largest and caused failure — for specimens with
multiple crack nucleation sites.

3.2  Program Approach

The objectives of the “Corrosion Pit to Crack Transition” Program were accomplished by
conducting a detailed fractographic analysis of fractured, corrosion fatigue specimens. These
specimens were selected from among those available from an earlier, integrated experimental
and modeling study (Contract F33615-96-D-5835, sponsored by U.S. Air Force Office of
Scientific Research and managed by Dr. K.V. Jata, AFRL Materials Directorate), which
quantitatively accounted for the effects of prior pitting corrosion on the fatigue behavior 7075-
T6 aluminum alloy sheet material.

The planned technical approach to conducting the detailed fractographic analysis of selected
corrosion fatigue specimens and documenting the corrosion pit to crack transition followed the
following steps:

1) Fatigue crack documentation

2) Identification and documentation of crack nucleation sites

3) Documentation and measurement of corrosion at crack nucleation sites
4) Observation of early cracking phase.

An AMRAY 3200C variable pressure SEM with a lanthanum hexaboride source was used for
specimen examination. Backscatter digital images were acquired using a Robinson detector and
the secondary electron digital images were collected with a traditional Everhart-Thomly
detector. The peripheral energy dispersive x-ray system contained a windowless Noran
INSTRUMENTS light element detector (Beryllium) whose data was interpolated by Noran
INSTRUMENT’s VANTAGE Digital Microanalysis Software.




Using best laboratory practices, the fractures from the selected corrosion fatigue specimens
were excised and ultrasonically cleaned. Most specimens were coated with about 0.15 nm of
gold to improve the image. Some specimens in which energy dispersive analysis (EDS) was
performed were not coated with gold.

The following subsections describe each of the steps in detail.
3.2.1 Fatigue Crack Documentation

The overall fracture surface was observed and photographed for each of the selected
specimens. An example of this type of photograph is illustrated in Figure 1, which shows the
fracture surface for a 7075-T6 specimen exposed to prohesion spray for 384 hours and fatigue
tested under constant amplitude loading with a maximum stress of 35 ksi and R ratio of 0.02.
The specimen life was 45,830 cycles. The fracture surface contains a dominant crack near the
center of the cross section. For specimens with multiple crack nucleation sites, the dominant
crack — the one that grew the largest and caused failure — was identified and its depth recorded.

Figure 1. Sample Corrosion Fatigue Fracture Surface for 7075-T6

3.2.2 Identification and Documentation of Crack Nucleation Sites

The cracks were observed and photographed at increased SEM magnification to locate the
crack nucleation sites. Identification of these crack origin regions made use of the observed
crack geometry and features. For example, in the case of an independent semi-elliptical surface
crack, the origin typically lies near the center of the ellipse. Higher magnification photos of this
area were used to locate corrosion near or at the crack nucleation sites. If multiple adjacent
cracks coalesced to form a larger dominant flaw, several crack nucleation sites may be present.
The crack front for each flaw is typically separated from the other flaws by a ridgeline feature on
the fracture surface. This ridge forms because of differences in the planes of the multiple cracks.




An example of a crack nucleation site is illustrated in the higher magnification photo of the
fracture surface in Figure 2. Figure 3 illustrates a still higher magnification area of the same site
shown in Figure 2. Evidence of corrosion can be observed at the origin of the crack.

Figure 2. Crack Nucleation Site




Figure 3. Crack Nucleation Site (Higher Magnification Photo)

3.2.3 Documentation and Measurement of Corrosion at Crack Nucleation Sites

Once corrosion is located at the crack nucleation sites, additional photographs were obtained at
different angles to document the corrosion on the specimen front face. (The specimens were
originally corroded on one side, referred to as the front face) An example of this type of
observation is illustrated in Figure 4 for the same crack origin area illustrated earlier in Figure 3.
Figure 5 shows a higher magnification photo of the same region. The lighter gray region in
Figures 4 and 5 is the fracture surface. The darker area is the corroded front face of the
specimen.




Figure 4. Corrosion at Crack Nucleation Site

Figure 5. Corrosion at Crack Nucleation Site (Higher Magnification Photo)

Figure 6 shows the corrosion on the front face of the specimen, adjacent to the fracture surface
in the vicinity of the crack nucleation zone. The fracture is directly above the specimen front
face and into the page.




Figure 6. Corrosion on the Front Face of Specimen
3.2.4 Observation of Early Cracking Phase

The fracture surface surrounding the corrosion at the crack nucleation sites were photographed.
Figure 7 shows an example of this type of observation. The darker area in the upper part of
the photograph is the fracture surface. The lighter area near the bottom is the corrosion pit.
The area contains striations and microcleavage surrounding the corrosion pit at the crack
nucleation site. Other details of how the failure progressed that can be identified, especially
when the cracks were small, were also documented.

Figure 7. Fracture Surface Features Surrounding the Corrosion at the Nucleation Site
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4, FRACTOGRAPHIC OBSERVATIONS
4.1  History of Specimens Used for Fractography

The specimens used in this investigation for the scanning electron microscopic observations of
the fracture surfaces and the corrosion pit to crack transition were obtained from an earlier Air
Force-funded investigation that studied the effects of pitting corrosion on the fatigue behavior of
bare 7075-T6 aluminum alloy (12, 13). In that study, rectangular panels, 150 mm (6 inches)
long and 75 mm (3 inches) wide, with the sheet rolling direction parallel to the specimen width,
were prepared from 2-mm (0.080 inches)-thick, bare, aluminum alloy 7075-T6 sheet material.
The panels were exposed for 24, 48, 96, 192, 384, 768 and 1,536 hours, respectively, in a
prohesion spray in accordance with the ASTM G8S5, Annex 5, dilute electrolyte cyclic fog/dry
spray test procedure. The exposure duration were chosen to obtain systematically increasing
levels of corrosion that were amenable to quantitative characterization and for providing
sufficient variation in the levels of corrosion for evaluating the influence on fatigue properties.

The dimensions of 200 randomly chosen pits were measured in representative panels exposed
to various durations in the prohesion spray by using a metallurgical microscope with a fine focus
knob calibrated to 1 um. Pit depths were measured by focusing on the specimen surface, first
at the lip of the pit and then at the bottom of the pit, with the difference in the fine focus knob
reading being the pit depth. The pits were generally elongated in the sheet rolling direction, and
accordingly the dimension along the rolling direction was designated as the pit length and that
along the transverse direction as the pit width.

The fatigue lives of 7075-T6 specimens with various levels of pitting corrosion damage were
predicted using the USAF developed fatigue crack growth software AFGROW (16). For each
corrosion exposure level, fatigue lives were predicted assuming an equivalent initial flaw
corresponding to pits of both average and maximum dimensions, respectively, obtained from the
pit size distributions.

The fatigue lives of 7075-T6 specimens fabricated from the corroded panels were also
measured by conducting constant amplitude tests at various maximum stress levels in laboratory
air using an R ratio of 0.02 and a frequency of 15 Hz. Pitting corrosion decreased the fatigue
lives by a factor of about 6 to 8, and the measured lives generally agreed with the predictions
using the average rather than the maximum pit size as the initial flaw size. This result was

explained by the pit size distributions offering a significantly larger population of pits near the

average size. Following this study, additional fatigue tests were also conducted on the remaining
available corroded specimens. These tests were such that a sufficiently large number of
replicate fatigue tests were conducted at several different maximum stress levels for specimens
with a given corrosion exposure and the results were used to develop a nondeterministic

corrosion fatigue life prediction method (17).
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In the present study, a total of 34 broken specimens from the previous investigations were
selected for observation of the fracture surface characteristics and analysis of the corrosion pit
to crack transition. Table 1 presents a list of these specimens along with the respective
corrosion exposure duration and the fatigue lives, which had been measured previously. The
specimen identification numbers from the previous investigations have been retained to enable
unambiguous tracing of the history of these specimens as well as to maintain ease of access to
specimens for any additional future evaluations.
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Table 1. List of Corrosion Fatigue Specimens Selected for Fractographic

Observations
Specimen Specimen Corrosion Exposure | Maximum Stress Fatigue Life (Cycles to
Number | Identification (Hours) (ksi) Failure)
1 43-1 24 45 22,390
2 43-2 24 45 22,350
3 45-1 24 45 23,350
4 45-2 24 45 20,510
5 45-3 24 45 26,510
6 47-2 48 45 22,590
7 47-3 48 45 22,720
8 48-1 48 45 22,950
9 48-2 48 45 27,200
10 48-3 48 45 23,910
11 46-1 48 55 7,660
12 46-2 48 55 12,310
13 47-1 48 55 11,810
14 51-3 96 30 77,780
15 51-1 96 35 52,530
16 50-3 96 40 37,940
17 49-2 96 45 39,340
18 50-2 96 45 20,350
19 49-3 96 50 18,250
20 50-1 96 50 14,500
21 58-2 768 30 179,820
22 58-3 768 35 77,710
23 60-1 768 35 37,620
24 58-1 768 40 39,940
25 59-3 768 45 19,310
26 60-2 768 45 17,670
27 59-2 768 50 17,320
28 61-3 1,536 35 39,380
29 62-1 1,536 35 30,950
30 62-2 1,536 40 22,950
31 61-2 1,536 45 15,130
32 63-3 1,536 45 18,830
33 61-1 1,536 55 6,550
34 63-2 1,536 55 6,040
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4.2 Fracture Surface Characteristics
4.2.1 Pits and Fatigue Crack Nucleation

Detailed views of the various aspects of the fracture surfaces of the 34 broken specimens are
presented in the collection of fractographs in this section and in the Appendix. These
photographs, with a few exceptions noted later, identify the pits that nucleated the dominant
cracks and their growth to the critical size. Each of the fracture surfaces of the broken
specimens is characterized by a single dominant crack that grew to critical size and caused the
catastrophic failure. Except in one specimen (number 59-3), these cracks all nucleated from
pits on the corroded surface of the broken specimens.

In our prior modeling studies of the fatigue crack nucleation in corroded specimens, we
assumed pits were distributed randomly on the corroded surface (12, 13). As shown in Figure
8, a single semi-elliptic surface crack is assumed to develop at a pit somewhere on the corroded
surface. The model independently computes crack growth on the surface (using pit length as
twice the initial crack length) as well as through the thickness (using the pit depth as the initial
crack length). Fatigue life is defined as the number of load cycles for the crack to reach the
critical size.

= Randomly Distributed Pits

» Single Semi-Eliptic Suriace Crack
Deveiops st 2 Pt Somewhere” on
the Corroted Face

» Kt Effect Negligidie (KL < 1.05)

¢ fnitisd Crack Diensngion =
Average or Maimnum Pt Sige

J T

m;mw o

Figure 8. Schematic of the Model Used for Fatigue Life Prediction of Corroded 7075-
T6 Specimens
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The range of sizes of the pits on the corroded surface of the 7075-T6 specimens would
include pits too small to nucleate fatigue cracks, those that nucleate cracks exhibiting small
crack behavior, and those that nucleate larger cracks. However, upon continued loading,
most of the nucleated cracks rapidly coalesce into one or a few larger aacks, which
eventually leads to one dominant crack. Nucleation of multiple cracks was observable in
some of the examined specimens. Depending upon the number of observable crack-
nucleating pits, the 34 specimens are classified as follows:

e In about half of the specimens examined, shown for example in Figure 9 for specimen
43-1, a single pit is identified to nucleate the dominant crack.

— Pit length
Pit depth )

Critical crack size |;

Specimen Surface 1,760 pm

Figure 9. Fracture Surface of Specimen 43-1 Showing Single Crack-Nucleating Pit and
the Critical Crack
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¢ In some cases, shown for example in Figure 10 for specimen 51-3, cracks nucleated from
two adjacent pits and coalesced, as evidenced by the ridge in the fracture surface.
However, it is difficult to distinguish the two pits clearly, as they appear to have joined just
as the corrosion exposure ended. While there is only one dominant crack, the length of the
crack-nucleating pit is considered the sum of the length of both the pits.

Specimen surface

Crack initiation from two adjacent pits

Figure 10. Fracture Surface of Specimen 51-3 Showing Cracks Nucleating From
Adjacent Pits and Coalescing Into Single Crack
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e In a few cases, shown for example in Figure 11 for specimen 48-3, several cracks are
observed to nucleate from the fracture surface. These all rapidly coalesced to a single crack
for which a nucleating pit can be identified.

Multiple nucleation sites

Pit nucleating the
dominant crack

Figure 11. Fracture Surface of Specimen 48-3 Showing Cracks Nucleating From
Multiple Pits and Coalescing Into Single Crack
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¢ In a few cases, shown for example in Figure 12 for specimen 45-1, no pits could be
identified because of the nature of surface corrosion, even though one dominant crack still
caused the failure.

Backscattered Image

Figure 12. Fracture Surface of Specimen 45-1 Showing a Dominant Crack But No
Discernible Pits

The above observations are summarized in Table 2. It should be pointed out that, despite these
differences, a dominant crack was always observed in all the specimens. Except in those cases
where pits could not be clearly delineated, the pit that nucleated the dominant crack could be
identified. While the depth of the pit (the dimension perpendicular to the corroded surface)
could be measured reasonably accurately, measurement of the length of the pit was subject to
the uncertainty resulting from coalescence of adjacent pits on the corroded specimen surface.
In addition, no correlation is obvious between the corrosion exposure duration or the maximum
stress level and the number of crack-nucleating pits.
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Table 2. Summary of Observed Crack-Nucleating Pits

Specimen Corrosion Exposur Maximum Stress
Identification (Hours) (ksi) Fatigue Life (Cycles to Failure
Dominant crack nucleating from single pit
43-1 24 45 22,390
45-2 24 45 20,510
47-3 48 45 22,720
48-2 48 45 27,200
46-1 48 55 7.660
51-1 96 35 52,530
49-2 96 45 39,340
50-2 96 45 20,350
49-3 96 50 18,250
50-1 96 50 14,500
58-2 768 30 179,820
58-3 768 35 77,710
58-1 768 40 39,940
61-3 1,536 35 39,380
62-1 1,536 35 30,950
62-2 1,536 40 22,950
63-3 1,536 45 18,830
Dominant crack nucleating from two adjacent pits
43-2 24 45 22,350
51-3 96 30 77,780
50-3 96 40 37,940
60-1 768 35 37,620
Dominant crack nucleating from multiple pits
45-3 24 45 26,510
48-1 48 45 22,950
48-3 48 45 23,910
46-2 48 55 12,310
47-1 48 55 11,810
60-2 768 45 17,670
61-2 1,536 45 15,130
61-1 1,536 55 6,550
Crack nucleating pit not discernible
45-1 24 45 23,350
47-2 48 45 22,590
59-2 768 50 17,320
63-2 1,536 55 6,040
Crack nucleation from the noncorroded fade
59-3 | 768 45 19,310
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4.2.2 Characterization of Fatigue Crack Nucleation Sites and Crack Growth

The depth and length of the crack nucleating pits, measured from the fracture surfaces, are
shown in Table 3. Also listed in this table are the mean and the maximum values of the pit depth
and length obtained from a distribution of 200 measurements on corroded panels exposed to
the various duration (12, 13). It is interesting to note that the measured pit dimensions are in
many cases higher than even the maximum dimensions from the pit size distributions. The
possible reasons for this observation are discussed in detail in the following section.

For selected specimens, an energy-dispersive x-ray spectroscopic analysis of the
material in the vicinity of the pit and the base material was performed. An example of such
observation is shown in Figure 13 for specimen 60-1. While all of the corroded specimens had
been cleaned using American Society for Testing and Materials (ASTM) standard procedures
to remove the corrosion products, it is impossible to remove them completely. The EDS traces
shown in Figure 13 are as expected. The area of the pit shows traces of oxygen consistent with
the nature of the corrosion product. The base material adjacent to the pit shows primarily
aluminum with signals from the alloying elements, zinc, magnesium and copper. Similar
observations are shown for selected specimens in the figures in the appendix.

Y
S E e

Figure 13. Fracture Surface of Specimen 60-1 Showing EDS Traces

During fatigue crack growth, aluminum alloys such as 7075-T6 exhibit ductile striations, which
represent successive positions of the fatigue crack front during crack propagation. For each of
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the 34 specimens, an examination of striations was made at three locations — close to the origin
of the crack in the vicinity of the pit/crack interface (site 1), about midway from the origin (site
2), and close to the critical crack depth (site 3). An example of such observation is shown in
Figure 14 for sample 43-2. Similar results for the remaining specimens are included in the
appendix. As expected, the number of striations per unit length decreases with increasing
distance from the origin due to increasing crack growth rate with increasing crack length and
stress intensity. However, for all the specimens, fatigue life estimated from the observed
striations was significantly lower than that measured. While there is one dominant crack, local
variations in crack growth rates are expected due to multiple crack fronts, which renders

estimation of life from striations meaningless.

Site 3
Distance from Origin: 1.5 mm
Average Striation Width: 0.001325 mm
Striations per Millimeter: 755

Site 1
Distance from Origin: 0.131 mm
Average Striation Width: 0.00015 mm
Striations per Millimeter: 6667

Site 2
Distance from Origin: 0.733 mm
Average Striation Width: 0.000304 mm
Striations per Millimeter: 3289

Figure 14. Fracture Surface of Specimen 43-2 Showing Fatigue Striations
Table 3 also lists the size (perpendicular to the corroded surface) of the dominant crack at

failure. In almost all cases, the fatigue crack has propagated through a significant part of the 2-
mm-thick test specimens, before reaching critical size.
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TABLE 3. Comparison of Measured Pit Dimensions With the Values From the Size

Distributions (All Pit and Crack Dimensions in pm)

Corrosion | Meas | Meas Max Critical
Specimen | Exposure | Pit Pit |Aspect| Pit |Mean Pit(Max Piff Mean Pit| Crack
Identification| (Hours) |Depth|Length] ratio | Depth | Depth [Length| Length | Depth
43-1 24 38 173 4.6 36 9.3 240 36.2 1,760
43-2 24 46 | 699 | 15.2 36 9.3 240 36.2 1,570
45-1 24 Pits not discernible 36 9.3 240 36.2 1,770
45-2 24 32 82 2.6 36 9.3 240 36.2 1,760
45-3 24 25 | 226 9.0 36 9.3 240 36.2 1,610
47-2 48 13 36 2.8 35 12.1 500 115 1,790
47-3 48 38 899 | 23.7 35 12.1 500 115 1,430
48-1 48 33 311 9.4 35 12.1 500 115 1,670
48-2 48 39 | 314 8.1 35 12.1 500 115 1,180
48-3 48 73 334 4.6 35 12.1 500 115 1,890
46-1 48 50 {1,049} 21.0 35 12.1 500 115 1,828
46-2 48 51 402 7.9 35 12.1 500 115 1,090
47-1 48 44 | 615 14.0 35 12.1 500 115 1,660
51-3 96 55 11,1501 20.9 29 13.9 300 107 1,940
51-1 96 48 | 365 7.6 29 13.9 300 107 1,790
50-3 96 22 | 485 | 22.0 29 13.9 300 107 1,760
49-2 96 36 154 4.3 29 13.9 300 107 1,890
50-2 96 48 | 429 8.9 29 13.9 300 107 1,310
49-3 96 20 191 9.6 29 13.9 300 107 1,500
50-1 96 58 528 9.1 29 13.9 300 107 1,630
58-2 768 48 | 456 9.5 37 23.5 600 163 1,880
58-3 768 21 151 7.2 37 23.5 600 163 1,620
60-1 768 25 520 | 20.8 37 23.5 600 163 1,660
58-1 768 77 178 2.3 37 23.5 600 163 1,870
59-3 768 23 | 467 | 20.3 37 23.5 600 163 1,670
60-2 768 42 | 312 7.4 37 23.5 600 163 1,560
59-2 768  |Pits not discernible 37 23.5 600 163 1,370
61-3 1,536 71 | 665 | 9.4 83 50.5 1,300 | 426 1,660
62-1 1,536 |Pits not discernible 83 50.5 1,300 | 426 1,550
62-2 1,536 46 | 503 | 10.9 83 50.5 1,300 | 426 1,760
61-2 1,536 86 116 1.3 83 50.5 1,300 426 1,830
63-3 1,536 51 598 | 11.7 83 50.5 1,300 426 1,370
61-1 1,536 28 | 220 7.9 83 50.5 1,300 | 426 137
63-2 1,536 |Pits not discernible 83 50.5 1,300 | 426 1,200
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5. DISCUSSION OF CORROSION PIT TO CRACK TRANSITION
5.1  Effects of Corrosion Damage on Fatigue Crack Nucleation

Section 2, Introduction and Background, reviewed the results of a number of prior
investigations, which all showed that in specimens containing localized surface corrosion damage
such as pitting, fatigue always initiates at these preexisting damage sites. In addition, individual
fatigue cracks would also be expected to nucleate from all the pits present on the corroded
surface, because in polycrystalline materials, preexisting surface damage can initiate a crack
immediately upon application of a load (15). However, all these cracks would coalesce early
into one or few larger cracks, which would eventually lead to a dominant crack, as observed in
all of the specimens investigated. Smaller secondary cracks, when observed such as in
specimen 48-3 (Figure 11), probably initiated later in the test.

In 30 of the 34 specimens examined, a single pit could be identified as the site of nucleation of
the dominant crack and the length and depth of this crack-nucleating pit could be measured
from the fracture surface. The width of this pit cannot be determined from only one-half of the
broken specimen. As shown in Table 3, the measured dimensions of the crack-nucleating pit,
particularly the length and to a lesser extent the depth, vary over a wide range, which is
somewhat to be expected from the varying corrosion exposure in the specimens.

In general, the measured length and depth of the pits are closer to the corresponding maximum
values obtained from the pit size distributions, which is consistent with the expectation that the
larger pits would provide larger initial flaws that would initiate the dominant cracks. However,
this observation is not consistent with the results of the earlier study in which the measured lives
of the corroded specimens were in general closer to the lives predicted by using the average
rather than the maximum pit dimensions as the sizes of the equivalent initial flaw (12, 13). A
possible reason for this could be that for life prediction, crack growth data for cracks of the size
of the pit dimensions were not available. Data available in the AFGROW materials databases
were then modified to account for early growth behavior by extending the middle part of the
curve (the Paris regime) below the threshold stress intensity. This approach would effectively
increase the growth rates during the early stages of fatigue crack growth and would predict
lower lives for a given pit size than if the true crack growth rates near the threshold region had
been available and wed. Thus, the measured fatigue lives would agree with those predicted
using pit sizes less than the maximum sizes and perhaps closer to the average sizes.

It is important to discuss the technical challenges inherent in measuring the crack-nucleating pit
sizes from the fracture surfaces and comparing them with the statistical distributions obtained
from measurement of the pit sizes in the corroded panels. The size distributions of the pits on
the corroded surfaces of the panels were obtained from pit size measurements using optical -
metallography. A disadvantage of this technique is that it is a line-of-sight method that does not
allow observation of undercutting by the pits. Thus, the pit depth values measured in the
corroded panels could be lower than the actual sizes. Secondly, the pit size measurements did
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not account for the surface density of the pits, i.e., the number of pits per unit area. In addition
to the length, width, and depth of the pits, the surface density also increases with increasing
corrosion exposure. This renders unambiguous distinction of pits very difficult in both the
corroded panels and the fracture surfaces. Two or more adjacent pits may then appear to
nucleate the same crack, as shown in Figure 10. Due to the interaction of adjacent pits, the
dimensions of the crack-nucleating pit measured from the fracture surfaces would then be higher
than its intrinsic dimensions. This uncertainty would appear to increase with increasing corrosion
exposure and the correspondingly increasing surface density of the pits, as illustrated in Figure
15. It should also be noted that one (specimen 59-2) of the four specimens for which pits could
not be clearly measured in the fracture surface was exposed for 768 hours, and two (specimens
61-2 and 63-2) of these four specimens were exposed for 1,536 hours.

24 Hours 48 Hours 96 Hours

768 Hours 1,536 Hours

Figure 15. Corroded Surface of Specimen Showing Increasing Surface Density of Pits
With Increasing Corrosion Exposure

It is interesting to note that the pit depth values measured from the fracture surfaces, which vary
between 13 and 86 um with a mean of 43 um, are in the range of 10- to 300- um pit depth
measured in 2024-T4 specimens corroded in an aggressive 20 wt% neutral salt spray by
Harmsworth (9) and are close to the 75- to 100- pm pit depth measured in naturally corroded
specimens by Tuegel and Mills (18). The implications of these observations for predicting the
effects of corrosion pitting on fatigue lives are discussed in the next section.
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5.2  Effects of Corrosion Damage on Fatigue Life

The measured fatigue lives of the 34 corroded specimens examined in this investigation are
shown in Figure 16. The measured lives of bare, noncorroded baseline 7075-T6 specimens are
also shown. The life of the noncorroded 7075-T6 specimen at a maximum stress level of 45
ksi, shown as 200,000 cycles, was obtained from Mil-HdBk-5. Consistent with the results of
all earlier studies, fatigue life of 7075-T6 is reduced drastically once corrosion damage is
present in the specimen surface, as evidenced by the large reduction in life following only 24
hours exposure. After this initial reduction, further corrosion exposure appears to reduce life
only little.
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Figure 16. Fatigue Lives of Corroded and Baseline 7075-T6 Specimens

In the investigation by Harmsworth reported by Cole et al. (3), the fatigue lives of 2024-T4
dropped to 30 percent of the life for noncorroded specimens following exposure in a 20 percent
neutral salt fog for 4 hours (corresponding to a pit depth of about 25 pm), to less than 20
percent of the life for non-corroded specimens following exposure for 8 hours (corresponding
to a pit depth of about 50 pum) and finally to less than 10 percent of the life for noncorroded
specimens following exposure for 32 days (corresponding to a pit depth of about 250 um).
Also, as reported by Cole et al. (3), a significant drop in the fatigue life was observed for a
lightly pitted 7075-T73 sheet compared with the noncorroded samples, which was further
reduced only slightly in heavily pitted specimens.
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In the more recent investigation by Tuegel and Mills (18), the fatigue life of 7075-T6 specimens
were reduced significantly after natural corrosion exposure for 3 months, with litle further
reduction upon exposure up to 12 months. These authors attributed the initial reduction of
fatigue lives to the formation of an influential pit following which further exposure had only a
minor effect on fatigue life. SEM examination of the fracture surface showed that the pits at
crack origin were 75 to 100 pm deep, and based on a holistic life assessment, it was suggested
that the influential pit should be 100 to 150 pum deep with an aspect ratio of 3:1. The present
investigation and that by Harmsworth (9) also show a large reduction of fatigue lives at
corrosion damage levels corresponding to much lower measured pit dimensions. Further
systematic investigations are necessary to verify and refine the life assessment methods.
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6. CONCLUSIONS

The following conclusions can be drawn from the results of the fractographic examination and
analysis of broken corrosion fatigue specimens: '

In aluminum alloys with preexisting corrosion pits, fatigue cracks nucleate at pits and start
growing immediately upon the application of load in a laboratory air environment. Failure of
these specimens is caused by a dominant crack, for which a single crack-nucleating pit can
be found in most instances.

Depending on the extent of surface pitting, secondary cracks may nucleate and grow, but
have no influence on the dominant crack or the fatigue lives.

The measured sizes of the crack-nucleating pits are near those of the largest pits on the
precorroded specimen surface, consistent with the expectation that the largest pits would
provide the largest initial flaws, which would nucleate the dominant cracks. Depending on
the interaction of the various crack fronts, one of these would eventually cause the specimen
failure.

In the range of corrosion exposure levels examined, pitting corrosion causes a significant
drop in the fatigue lives of aluminum alloys, even at low levels of corrosion, but reduces life
very little with further increase of corrosion damage.

The nature and rate of reduction of fatigue lives due to pitting damage suggests the
possibility of an influential pit. Further investigations are needed to verify and refine the
characteristics of such pits.

The use of fractography to determine the characteristics of crack-nucleating sites has the
potential to provide corrosion metrics for development and verification of life-prediction
models. For accurate life assessment, fatigue crack growth data at very low crack sizes
(about 50 pum) are necessary.
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APPENDIX

Photographs documenting the detailed fractographic evaluation of the 34 specimens are shown
in Figures A-1 through A-68. Each specimen has two corresponding figures, one describing the
crack nucleation site and the other showing the crack growth and striations.
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Figure A-19. Specimen 47-3
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Figure A-31. Specimen 50-1
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